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Abstract. We develop and validate a high-resolution three-dimensional model of light and air

temperature for a tropical forest interior in Hawaii along an elevation gradient varying greatly in

structure but maintaining a consistent species composition. Our microclimate models integrate high-

resolution airborne waveform light detection and ranging data (LiDAR) and hyperspectral imagery with

detailed microclimate measurements. We then use modeled microclimate and forest structural and

compositional variables to explain variation in spatially explicit measurements of leaf traits, including gas

exchange and structure. Our results highlight the importance of: (1) species differences in leaf traits, with

species explaining up to 65% of the variation in some leaf traits; (2) differences between exotic and native

species, with exotic species having greater maximum rates of assimilation and foliar d15N values; (3)

structural factors, with foliar %N and light saturation of photosynthesis decreasing in mid-canopy

locations; (4) microclimate factors, with foliar %N and light saturation increasing with growth environment

illumination; and (5) decreases in mean annual temperature with elevation resulting in closure of the

nitrogen cycle, as indicated through decreases in foliar d15N values. The dominant overstory species

(Metrosideros polymorpha) did not show plasticity in photosynthetic capacity, whereas the dominant

understory species (Cibotium glaucum) had higher maximum rates of assimilation in more illuminated

growth environments. The approach developed in this study highlights the potential of new airborne

sensors to quantify forest productivity at spatial and temporal scales not previously possible. Our results

provide insight into the function of a Hawaiian forest dominated by native species undergoing

simultaneous biological invasion and climatic change.
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INTRODUCTION

Tropical forests cover 11.7% of the global land
surface area (Potter et al. 1993), contain 57% of
above- and 27% of belowground carbon (Dixon
et al. 1994), and are important contributors to the
terrestrial global carbon cycle (Field et al. 1998,
Cramer et al. 2004). Carbon fluxes and overall
productivity within these forests are highly
dependent upon light and temperature regimes
(Boisvenue and Running 2006), which are pre-
dicted to undergo changes in the future (Hulme
and Viner 1998, Mercado et al. 2009, Hansen et al.
2010). Light within a forest understory is
considered to be the most important (Mercado
et al. 2009), and limiting (Stadt et al. 2005),
environmental factor influencing photosynthesis
and carbon gain (Ellsworth and Reich 1992, Kull
2002, Araujo et al. 2008). Overall, light penetra-
tion to a tropical forest understory is among the
lowest of terrestrial ecosystems (Chazdon and
Pearcy 1991). The light which does exist is
temporally variable, due to time of day, season
or climatic conditions, and is highly dependent
on the structure and density of both the forest
under- and over-story (Montgomery 2004). De-
spite light limitation, the understory can make
substantial contributions to overall forest pro-
ductivity. For example, Sampson et al. (2006)
calculated understory plants contributed up to
28% of a deciduous forest’s gross primary
productivity due to understory penetration by
diffuse radiation.

Variation in microclimate often results in
predictable changes in leaf traits (Poorter et al.
2006). The established paradigm is that photo-
synthesis is N limited (Evans 1989), and numer-
ous studies have shown the significant positive
relationship between leaf N content and maxi-
mum photosynthesis capacity (Amax) (Chazdon
and Field 1987, Evans 1989, Evans and Poorter
2001), independent of species differences (Wal-
ters and Field 1987). Given this, forest canopies
should optimize both the distribution of their
leaves for high light capture efficiency and leaf
photosynthetic rates according to their irradiance
growth environment (Field 1983, Meir et al. 2002,
Laisk et al. 2005). Canopy optimization of N
distribution and photosynthetic capacity to light
availability has been shown within a variety of
crop and forest stands (Hirose et al. 1989,

Hollinger 1989, Ellsworth and Reich 1993, Dang
et al. 1997).

It remains unclear, however, how foliar accli-
mation and development adjusts to differing
types and variability of irradiance (Meir et al.
2002, Bai et al. 2008). This is especially relevant
when considering communities of diverse spe-
cies, although the importance of such differences
has been demonstrated (Chazdon and Field
1987). Understanding drivers of leaf trait varia-
tion in different species or functional groups
(Poorter et al. 2006) is especially relevant in
taxonomically and architecturally diverse, but
light limited, tropical forest understory environ-
ments. A number of factors diminish the strength
of relationships between light availability and
investment in photosynthetic capacity, including
light saturation, partitioning of nitrogen for non-
photosynthesis activities, leaf aging, and position
(Field 1983), or variation in temperature, wind
speed, precipitation and nutrient availability, as
well as species differences (Dang et al. 1997).

Ecosystem processes within tropical forests,
such as overall productivity (Baldocchi and
Harley 1995), occur within a complex three-
dimensional architecture (Koetz et al. 2007).
Interactions between architecture and microcli-
mate require further study (Gastellu-Etchegorry
and Trichon 1998). Failure to include spatial data
on forest architecture, for example, can result in
large errors from simple big-leaf models (Bal-
docchi and Harley 1995, Knohl and Baldocchi
2008). Attempts to estimate daily light regimes
using traditional methods, such as hemispherical
photographs, have resulted in inaccurate values,
up to 107% greater than those shown from
understory photosynthetic active radiation
(PAR) sensors (Johnson and Smith 2006). Light
regime modeling approaches explicitly integrat-
ing manually collected leaf area distributions
showed greatly improved results (Aubin et al.
2000, Gersonde et al. 2004).

High-resolution light detection and ranging
(LiDAR) sensors allow incorporation of spatially
explicit information into microclimate models at
scales infeasible through field data collection.
Airborne LiDAR has recently been used to
accurately estimate forest height (Hudak et al.
2002, Sexton et al. 2009, Dubayah et al. 2010),
biomass (Asner et al. 2008a, Boudreau et al. 2008,
Asner et al. 2012, Meyer et al. 2013), and
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architecture (Omasa et al. 2007), including gap
dynamics (Koukoulas and Blackburn 2004, Kell-
ner and Asner 2009). The capacity to quantify
forest structure over large areas at high resolu-
tions has led to insights into ecosystem function
(Asner et al. 2008a, b), including patterns of
canopy height heterogeneity not visible at small-
er scales (Vitousek et al. 2009). Discrete LiDAR,
in which a small number of individual laser
pulses are used (Lim et al. 2003), has more
recently, been combined with hyperspectral
imagery and used to generate maps of leaf
chlorophyll (Thomas et al. 2006), providing
insights into flux tower measurements of gross
ecosystem productivity (Thomas et al. 2009).
Waveform LiDAR (i.e., wLiDAR) differs from
discrete LiDAR sensors as it records a higher
point cloud per area, approximating the com-
plete waveform of the backscattered echo signal
(Mallet and Bretar 2009), allowing more accurate
estimations of forest understory architecture
(Asner et al. 2007). This could lead to a better
understanding of forest productivity if data
approximates the fine scales at which canopy
microclimate and ecophysiology are determined,
but comes at the expense of greatly increased
storage capacity and subsequent post-processing
requirements (Mallet and Bretar 2009). Parker et
al. (2001) used wLiDAR, one of the first attempts
integrating this technology, to estimate nadir
light transmittance statistics for two forest
stands; however, a horizontal resolution of 10
m made detailed forest interior studies infeasible.
Koetz et al. (2006) used physically-based radia-
tive transfer models to invert large footprint
waveform LiDAR (wLiDAR) accurately estimat-
ing forest biophysical parameters, including leaf
area index (LAI), tree height, and general interior
forest architecture.

In this research, we develop a new approach to
map forest leaf area (2D) and leaf density (3D) at
very high spatial scales. Using these maps, we
develop and validate a three-dimensional model
of direct and diffuse light transmittance and air
temperature throughout a tropical rainforest in
Hawaii. We then couple the microclimate models
with detailed spatially explicit measurements of
plant ecophysiological characteristics across a
community of native and invasive species to
understand structural, taxonomic, and climatic
determinants of ecophysiological properties. The

selected study forest, a model ecosystem having
a near mono-dominant canopy species and both
invasive and native species coupled with an
extraordinary elevation gradient along the slope
of Mauna Kea volcano, enables addressing
questions related to relationships among forest
structure, climate and ecophysiology not feasible
in other systems. The specific research objectives
of this study are to: (1) develop and validate a
high resolution three-dimensional model of
forest microclimate using a coupled airborne
LiDAR–hyperspectral sensor; and then to (2)
integrate remote sensing information and mod-
eled microclimate data to better understand the
taxonomic, structural and microclimatic determi-
nants of foliar ecophysiology in our study area.

MATERIALS AND METHODS

Study design
Fig. 1 presents the overall study design, and

we describe in detail each component of the
flowchart below. We combined airborne remote
sensing data with spatially explicit measure-
ments of forest microclimate and ecophysiology.
We then developed detailed spatio-temporal
models of microclimate and used these models
to understand variation in foliar ecophysiology.
We parameterized and validated remote sensing
and modeling components using extensive field
data.

Study site
This study was undertaken in the 5,016 ha

State of Hawaii Hilo Forest Reserve and Laupa-
hoehoe Natural Area Reserve, designated as a
Hawaii Experimental Tropical Forest (HETF) of
the US Forest Service (USFS), located on the
North Hilo coast of the island of Hawai’i,
Hawai’i. This reserve is also the location of a
newly established Hawaii Permanent Plot Net-
work (HIPPNET) and Center for Tropical Forest
Science (CTFS) research plot (www.ctfs.si.edu).
The reserve encompasses an elevation gradient
from 600 to 1800 m elevation, with overall
gradients in temperature and precipitation of
13–188C and 2000–3500 mm, respectively (Giam-
belluca et al. 2011). A 2.5 km long by 800 m wide
study transect was established in the northern
central portion of the reserve extending from
1005 to 1343 m elevation (Fig. 2), corresponding
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to a mean annual temperature of 16.2–17.58C,

respectively, comparable to the projected increas-

es in global temperature over the next century

(Nozawa et al. 2001). While three distinct

substrate ages exist within the reserve: 4–14,

14–25 and 25–65 ty (ty ¼ 1000 yrs.), resulting

from previous lava flows, the study transect was

located entirely on youngest flow (4–14 ty). The

transect consisted of two soil types, the lower

half resting on the Akaka soil (rAK) and the

upper half on Honokaa silty clay loam (HTD),

both considered well drained with moderate

available water capacity (websoilsurvey.nrcs.

usda.gov, accessed 06/02/2011). The study tran-

sect was situated to keep the native Hawaiian

tree Metrosideros polymorpha v. glaberrima (Myrta-

ceae) constant as the dominant canopy species, to

the near exclusion of all others. Aboveground

biomass (AGB) across the study transect ranged

from approximately 500 Mg�ha�1 at 1000 m to

250 Mg�ha�1 at 1300 m (Asner et al. 2008a),

simultaneous to a reduction in average canopy

height from 24 to 14 m (Fig. 3).

The lower portion of the transect begins above

Fig. 1. Overview of remote sensing and field data integration and analysis. Hyperspectral and waveform light

detection and ranging (LiDAR) data were collected simultaneously using the Carnegie Airborne Observatory

(CAO) while discrete LiDAR was collected separately. Field data collected for parameterization and validation

included: (1) LAI-2000 for leaf area index (LAI; two-dimensional), (2) vertical leaf area density (LAD; three-

dimensional) transects, (3) microclimatic data, and (4) leaf trait measurements throughout the study transect.

Leaf traits included chemical and gas exchange analyses. Microclimate data included modeled daytime mean and

standard deviation photosynthetic photon flux density (PPFD) and modeled mean daytime air temperature.

Spatial data included location, elevation, and forest structural information. Taxonomic data included species,

native vs. exotic status, and life form. Principal component analysis (PCA) axes were input into K-means analysis

to identify ecophysiological similar clusters that were explained through differences in microclimate, taxonomy,

and spatial location.
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a biological invasion front ending around 900 m
dominated by Psidium cattleianum (Myrtaceae)
and Ficus rubiginosa (Moraceae) and ends below
an area of natural M. polymorpha dieback
(Mueller-Dombois 1987). Understory plant com-
position is dominated by tree ferns (Cibotium sp.),
and the small trees Cheirodendron trigynum ssp.
Trigynum (Araliaceae), Ilex anomala (Aquifolia-
ceae), Myrsine lessertiana (Myrsinaceae) and
Coprosma rhynchocarpa (Rubiaceae). The primary
animal source of disturbance—constant through-
out the study transect—consists of non-native
feral pigs (Sus scrofa) which root the forest floor
and propagate invasive species (Stone et al.

1992).

Study plots
Study plots were established at low (;1000 m)

and high (;1300 m) elevations and positioned to
encompass the range of forest structure found in
the study transect. Six plots were located
between 1000 and 1050 m and five between
1250 and 1300 m elevations. We established a 2 m
by 30 m transect within each study plot (N ¼ 8).
Data were collected for each stem greater than
0.5 m in height and included elevation (1000 or
1300 m), species, native vs. non-native status,
height (m), and diameter (cm; at breast height

Fig. 2. Study area (C) located within the Hawaii Experimental Tropical Forest (B) in Laupahoehoe, Hawai’i (A).

Inset C provides tree height at 1.25 3 1.25 m resolution, with heights ranging from 0 m (black) to 40 m (white).
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when applicable, i.e., DBH). Volume (cm3) was
calculated as basal area (cm2) multiplied by
height (cm). Density (D ¼ no. of individuals/
1000 m2), dominance (Do ¼

P
volume of all

individuals/1000 m2) and frequency (F¼ number
of transects containing the species) were calcu-
lated for each species. An importance value (IV)
was calculated for each species using relative
percent values (R) as compared to the median of
all species, calculated as:

IV ¼ ½RD 3 100� þ ½RDo 3 100� þ ½RF 3 100� ð1Þ

modified from Busby et al. (2010) and Curtis and
McIntosh (1951). Georeferenced marker stakes
were established within each study plot using a
differentially corrected geographic positioning
system (GPS) unit (GS-50þ, Leica Geosystems,
St. Gallen, Switzerland) incorporating multiple-
bounce filtering. Following 6 to 8 hours of 5-
second interval GPS data collection per marker
(N ¼ 10) final post-differential correction hori-
zontal (XY) and vertical (Z) uncertainty were 19
6 13 and 33 6 24 cm (mean 6 SD), respectively.

Georeferencing
All interior forest measurements were geo-

referenced vertically and horizontally for inte-
gration with remote sensing data. The
georeferencing procedure consisted of mounting
a laser rangefinder with integrated inclinometer
and 3D compass (Trupulse 360B, Laser Technol-
ogy, Centennial, Colorado, USA) using filter

mode and reflectors to avoid erroneous pulse
returns on a tripod a known height (mh; cm)
directly above a study plot marker stake. Position
data returned from the Trupulse included the
straight-line distance (sd; in meters), inclination
(inc; in degrees) and azimuth (az; in degrees)
from magnetic north. Prior to offset calculations,
azimuth was adjusted to degrees from true north
by adding a declination of 9.758 (www.ngdc.
noaa.gov/geomagmodels/struts/calcIGRFWMM).
Locations of offset locations were then calculated
from the marker stake as:

hd ¼ sd 3 cosðincÞ ð2Þ

x offset ¼ hd 3 sinðazÞ ð3Þ

y offset ¼ hd 3 cosðazÞ ð4Þ

zoffset ¼ sd 3 sinðincÞþmh ð5Þ

where hd ¼ horizontal distance (in meters), and
x, y and z offsets are in meters from the marker
stake. An accuracy assessment of geolocation
offsets showed single offsets were accurate to
,30 cm in the vertical and horizontal dimensions
over a wide range of distances (11–22 m),
whereas double offsets, required in only a few
instances when the marker stake had an ob-
structed view of the measurement location, were
accurate to ,64 cm vertically and horizontally.

Fig. 3. Tree height (m) and leaf area index (LAI; m2/m2) for 50 m elevation classes. Data derived from airborne

hyperspectral imagery (1.25 3 1.25 m resolution) with N . 500,000 pixels per elevation class.

v www.esajournals.org 6 May 2014 v Volume 5(5) v Article 57

BROADBENT ET AL.



Climate measurements
Both top-of-canopy (TOC) climate and interior

forest microclimate measurements were collect-
ed. TOC measurements were acquired continu-
ously by stations at 1052 (i.e., low), 1180 (i.e.,
mid), and 1353 (i.e., high) m elevation, evenly
spaced along the transect. TOC sensors at low
and high-elevations consisted of a total quantum
sensor (SQ-110, Apogee Instruments, Logan,
Utah, USA), temperature and relative humidity,
a sonic anemometer and precipitation (WXT-510,
Vaisala, Helsinki, Finland) downloaded to a
datalogger (CR-200, Campbell Scientific, Logan,
Utah, USA). The mid-elevation sensor array
consisted of a direct/diffuse quantum sensor
(BF3, Delta-T Devices, Cambridge, UK), a total
quantum sensor (LI-190, LI-COR, Lincoln, Ne-
braska, USA), and temperature and relative
humidity sensors (HMP45C-L20, Vaisala) down-
loaded to a datalogger (CR-3000, Campbell
Scientific). Climate data collected every 15
seconds was averaged to a one-minute interval,
with the exception of rainfall data that was the
sum total each minute. Four mobile interior
forest micro-climate stations were constructed,
each consisting of a quantum sensor (SQ-110,
Apogee Instruments), a temperature and relative
humidity sensor (HOBO U23-002, Onset Com-
puter, Bourne, Massachusetts, USA) and a cup
anemometer (200-WS-01, Novalynx, Auburn,
California, USA). PAR measurements, from the
quantum sensors, and wind speed data were
downloaded to a datalogger (CR-10x, Campbell
Scientific) while temperature and relative humid-
ity data were internally logged. Microclimate
data were logged every 15 seconds and averaged
to one-minute intervals. In addition, PAR data
were logged every three seconds for the initial
five minutes of each hour.

TOC PAR sensors were intercalibrated using
known clear sky days to the mid-elevation
quantum sensor, which was recalibrated annual-
ly, and calibration drift was removed using a
clear sky PAR model coded in the R language (R
Development Core Team 2013) and modified
from equations provided by Apogee Inc. and as
developed by the American Society of Civil
Engineers (2005) (see Supplement for code). This
model uses day of year, time of day, latitude,
longitude, elevation, air temperature, and rela-
tive humidity as input variables and has been

validated to estimate clear sky PAR within 3% at
solar noon. Interior forest quantum sensors were
intercalibrated weekly in an open field for two
hours with data logged every 15 seconds
averaged to one-minute intervals and returned
for recalibration several times a year.

Leaf traits
Leaf trait measurements included light, CO2

and induction gas exchange response curves,
foliar mass per area, elemental C and N
percentage, and d13C and d15N stable isotopes.
Foliar gas exchange measurements were ac-
quired using a LI-6400 portable infrared gas
analyzer (LI-COR) on the dominant species
identified by the species importance values.
Single and double rope tree climbing techniques
were used to collect in situ foliar gas exchange
above 2.5 m in height, while tripods were used
below that height. Additional data collected at
each measurement location were: (1) species, (2)
time and date, (3) DBH, (4) height of measure-
ment, and (5) total height of plant. Photographs
were collected for identification by botanists at
the University of Hawaii at Hilo in cases where
the species was not identified in the field. Gas
exchange measurements were acquired at ambi-
ent leaf temperature, between 238 and 278C, on
mature leaves with relative humidity maintained
between 65% and 75% and following a minimum
30-minute LI-COR 6400 stabilization period.
Most measurements were conducted with the
cuvette leaf area at capacity (6 cm2); however,
when leaves smaller than 6 cm2 were used, leaf
area was measured in the field and gas exchange
measurements were adjusted accordingly. Each
of the three response curves were collected on
separate leaves located immediately adjacent to
each other and having similar characteristics.
Curves were measured between the hours of
09:00 and 16:00 at a flow rate of 400 mol�air�s�1.

Light response curves were collected at a
constant reference chamber CO2 concentration
(lmol�CO2�mol�1 air) of 400 and by increasing
the photosynthetic photon flux density (PPFD or
Q; lmol�m�2�s�1), i.e., encompassing the 400–700
nm wavebands, stepwise from zero through
saturating PPFD using the following increments:
0, 20, 40, 60, 80, 100, 130, 160, 200, 250, 300, 400,
800, and 1600. Measurements at each PPFD were
logged when gas exchange was stable as indicat-
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ed by: (1) visually stable intracellular CO2

concentration (Ci; lmol�CO2�mol�air�1) and net
CO2 assimilation rates (A; lmol�CO2�m�2�s�1)
values, (2) a total coefficient of variation (CV)
percentage (calculated as the sum of CO2 and
H2O CV percent) of less than 0.1% and (3)
following a min-max wait time of 3–10 minutes,
respectively. CO2 response curves, CO2 assimila-
tion rates versus the intracellular CO2 concentra-
tion (ACi ), were collected at saturating PPFD þ
200 (lmol�m�2�s�1) identified by the light re-
sponse curve. Following a five-minute stabiliza-
tion period at a reference chamber CO2

concentration (lmol�CO2�mol�1�air) of 100, CO2

concentration was increased stepwise through
the following increments: 100, 300, 600, 900, 1200,
and 1500. Measurements were logged at each
increment using the same criteria as for light
response curves, but with min-max time adjusted
to 3–5 minutes, respectively. Induction response
curves were collected following a five-minute
stabilization period at a PPFD of 20. During the
last 30 seconds of stabilization, measurements
were logged every two seconds, following which
PPFD was increased directly to 1300, and logging
continued every two seconds for 3–5 minutes.
Prior to analysis measurements from the light
and CO2 response curves were normalized for
differences in leaf temperature to A at 258C
through a custom version of the SiB2 photosyn-
thesis model (Sellers et al. 1996) coded in IDL
(Interactive Data Language, ITTVIS, Boulder,
Colorado, USA, 2000–2010) and provided by
Joseph Berry (Department of Global Ecology,
Carnegie Institution for Science, Stanford, Cal-
ifornia, USA, personal communication).

Normalized light (AQ) and CO2 (ACi ) re-
sponse curves were fit through non-linear pa-
rameterization using the LI-COR Photosynthesis
software (Version 1.0, LI-COR) available online:
ftp://ftp.licor.com/perm/env/LI-6400/Software/
analysis_software/Photosynthesis.exe [accessed
06/03/2011]. AQ curves were fit to:

A ¼ [ 3 Q

½1þ [ 3 Q
Amax

� �p
�1=p
þ A0 ð6Þ

where A (i.e., Aarea) is the net CO2 assimilation
(lmol�CO2�m�2�s�1) per area, Amax is the maxi-
mum rate of A (the asymptote), [ is the apparent
quantum efficiency (i.e., the initial slope of the fit

hyperbola), p is the curve convexity parameter, A0

is the dark respiration rate (lmol�CO2�m�2�s�1)
and Q is the incident PPFD (lmol�m�2�s�1). In
addition, the light compensation point and light
saturation estimate (lmol�m�2�s�1) were calculat-
ed as Q value at which A ¼ zero and the linear
intersection of [ and A0 with Amax, respectively.

ACi curves were fit to a biochemical model of
photosynthesis developed by Farquhar et al.
(1980) and updated to account for triose-phos-
phate limitation (TPU) as described in Long and
Bernacchi (2003), where net CO2 assimilation (A)
per area, dependent solely on mesophyll pro-
cesses, is determined by the minimum of three
potential limiters: Rubisco activity (Vcmax; Wc),
RuBP regeneration (Jmax; Wj) or the regeneration
and utilization of inorganic triose-phosphate
(VTPU; Wp). Limitation typically shifts from Wc

to Wj to Wp with increasing Ci, calculated by:

Wc ¼
Vcmax 3 Ci

½Ci þ Kc 1þ O Ko= Þ�ð ð7Þ

where Vcmax is the maximum rate of carboxyla-
tion by Rubisco (lmol�CO2�m�2�s�1), Kc and c are
the Michaelis-Menten constants of Rubisco for
CO2 and O2, respectively, and O is the stroma O2

concentration (Pa).

Wj ¼
J 3 Ci

4:5 3 Ci þ 10:5 3 C
ð8Þ

where C¼ 0.53 O/s; s is the specificity factor for
Rubisco, and J, the whole chain electron trans-
port rate, is:

J ¼
Q2 þ Jmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðQ2 þ JmaxÞ2 � 4hPSIIQ2Jmax

q
2hPSII

ð9Þ

with hPSII¼ curvature factor, Q2¼ incident quanta
available to PSII, and:

Q2 ¼ Q }
1

[PSIImaxb ð10Þ

where }1 ¼ leaf absorptance, [PSII,max ¼ max
quantum yield of PSII, and b¼ fraction absorbed
light accessible by PSII.

Wp ¼
3 3 TPU

1� C
Ci

� � ð11Þ

where Vo is the rate of oxygenation of Rubisco
and TPU is rate of triose phosphate utilization
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(lmol�CO2�m�2�s�1). The determination of A at Ci

(x) is:

A ¼ 1� C
Ci

� �
3 minðWc;Wj;WpÞ � Rday ð12Þ

where Rday represents the CO2 released through
non-photorespiration processes (lmol�CO2�
m�2�s�1).

Induction response data were analyzed
through non-linear parameterization of a two
parameter modified rectangular hyperbola mod-
el in JMP software (Version 7; SAS Institute, Cary,
North Carolina, 1989–2007) developed for induc-
tion response analysis (Hunt et al. 1991, Poorter
and Oberbauer 1993). The model is defined as:

At ¼
Amax 3 ki 3 t

Amax þ ki 3 t
ð13Þ

where At is assimilation at time t (seconds), ki is
the induction curve convexity, t is seconds post-
PPFD increase and Amax is net CO2 assimilation
per unit area. Using the output Amax value, the
input data were then converted to induction
state, redefining A as percentage of Amax at time t
(seconds) post-induction, and the equation was
then reparameterized using an Amax equal to
100% to obtain kis, a value comparable across
leaves varying in Amax. Output results for
statistical analysis were the estimated Amax, ki,
kis, and time (seconds) to 50% induction state
(IS50%) calculated as:

t ¼ � IS 3 Amax

ðIS� 100Þki

ð14Þ

where t is time post induction in seconds, IS
equals the induction state (%), and Amax and ki
are as defined above.

All leaves on which gas exchange measure-
ments were conducted were collected and
scanned at 600 dpi (x9575, Lexmark Internation-
al, Lexington, Kentucky, USA) for leaf area
calculation in Photoshop (CS, Adobe Systems,
San Jose, California, USA) within 12 hours.
Leaves were then oven dried at 558C for 48–56
hours, weighed (0.01 mg; Mettler Toledo AG245),
and ground to a fine powder using a Wiley Mill
(Thomas Scientific, Swedesboro, New Jersey,
USA) fitted with a 40-mesh screen. Samples were
analyzed for C and N concentration, and d13C
and d15N, using a Vario Microcube elemental
analyzer (Elementar Analysensysteme, Hanau,

Germany) coupled to an isotope ratio mass
spectrometer (Isoprime, Manchester, UK) oper-
ating in continuous flow mode at the Stable
Isotope Laboratory at Tulane University. Samples
were normalized to international isotope scales
by bracketing with USGS-40 and USGS-41
glutamic acid standards (calibrated to the inter-
national VPDB (d13C) and AIR (d15N) scales) and
repeated analysis of sorghum flour was used to
assess instrumental drift during runs as well as
differences between runs. Stable isotope data are
expressed using ‘‘delta’’ notation (Ometto et al.
2006).

Additional variables were defined as follows:
specific leaf area (SLA) is the projected leaf area
per unit leaf dry mass (cm2/g) (Evans and Poorter
2001, Martin and Asner 2009, Liu et al. 2010), leaf
mass per area (LMA; g/m2) (Cordell et al. 1998),
Narea is nitrogen content per area (g/m2) (Ells-
worth and Reich 1993, Dang et al. 1997, Cordell
et al. 1998), photosynthetic nitrogen use efficien-
cy (PNUE) is the ratio of Amax to Narea

(lmol�CO2�s�1�mol�1 N) (Cordell et al. 1998,
Funk and Vitousek 2007), water use efficiency
(WUE) is the ratio of Aarea to transpiration rate
(lmol�CO2 per mmol H2O) under saturating PAR
(Funk and Vitousek 2007), and Amass is the ratio
of Amax to unit leaf dry mass (nmol�CO2�g�1�s�1)
(Ellsworth and Reich 1992). We also calculated
the ratio of IS50%/Amax, to understand optimiza-
tion of induction response time, which we
included in the Akaike Information Criteria
(AIC) and best subsets regression analyses
described in Data integration, below.

Airborne remote sensing
The study transect was imaged by the Carne-

gie Airborne Observatory (CAO) Alpha sensor
system in January 2008 at a height of 500 6 50 m.
The CAO-Alpha integrated a high-fidelity hyper-
spectral imager (HiFIS) having 72 bands distrib-
uted from 368 to 1040 nm, a waveform LiDAR
(wLIDAR) scanner operating at 1064 nm and 100
kHz and a Global Positioning System-Inertial
Measurement Unit (GPS-IMU). An automated
processing stream incorporated ortho-georectifi-
cation and atmospheric correction for a final
spatial accuracy of ,15 cm in the vertical or
horizontal dimension (Asner et al. 2007). HiFIS
data had a final spatial resolution of 1.25 m while
wLiDAR data were collected at 0.56 m. wLiDAR
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pre-processing included noise reduction, decon-
volution, waveform registration and angular
rectification (Wu et al. 2011). wLiDAR point
clouds were processed to proportional data by
summing points within 0.56 3 0.56 3 0.15 m
(XYZ ) voxels, and dividing each voxel’s value by
the summed total points in each 0.56 3 0.56 m
vertical profile throughout the study transect.
Ground and tree crown topography maps were
generated through analysis of point cloud data.
Solar azimuth at time of data collection was
calculated in IDL using solar geometry and tree
crown topography.

LAI (m2 leaf area/m2 ground area) was
calculated using paired LAI-2000 (LI-COR) units
in remote mode for 49 locations randomly
distributed throughout the study transect at a
height of 155 cm. We calculated a map of the top-
of-canopy cosine angle to the sun using the tree
(primarily M. polymorpha) canopy topography
maps and per-pixel acquisition time. HiFIS data
were resampled to 0.563 0.56 m from 1.253 1.25
m spatial resolution to be directly comparable
with the wLiDAR data using the nearest neigh-
bor method. The modified red edge normalized
difference vegetation index (mNDVI; see Gitel-
son and Merzlyak 1996 and Gamon and Surfus
1999):

mNDVI705 ¼
q750 � q705

q750 þ q705 � 2q445

ð15Þ

was applied to the image and we then removed
the effect of shade through a linear regression
between mNDVI extracted for a 2 m radius
surrounding each LAI field location and the
cosine value (P , 0.0001; R2 ¼ 0.5367), then
calculated LAI as the linear relationship between
field calculated LAI values and the difference
between the cosine predicted mNDVI value and
that calculated from the image. The final rela-
tionship was highly significant (P , 0.01; R2 ¼
0.3401; N ¼ 49) and was applied to the entire
HiFIS image to derive a detailed LAI map of the
study area.

Leaf area density (LAD), defined as m2 of leaf
area per m3 of volume, was calculated through-
out the study area using the proportional data
derived from the corrected wLiDAR points.
Three-dimensional maps of LAD were calculated
by converting two-dimensional LAI values from
m2 to pixel scale (0.56 3 0.56 m¼ 0.3136 m2) and

distributing the leaf area across the vertical
profile according to the proportion values ob-
tained from the wLiDAR proportion maps at a
vertical resolution of 0.15 m, as below:

LADðxÞ ¼ LAI 3 0.3136 3 pwfðxÞ ð16Þ

where LAD ¼ leaf area (m2) within the vertical
profile (0.56 3 0.56 m) at height x to x þ 0.15 m,
LAI ¼ leaf area index (m2 leaf/m2 ground area),
and pwf ¼ proportion waveform LiDAR points
occurring at x.

The wLiDAR correction process was validated
for this study site using field leaf area density
profiles (N ¼ 13) ranging from 10 to 24 m in
height with horizontal and vertical resolution of
a 0.2463 m2 and 0.5 m, respectively. Field LAD
profiles were collected across diverse forest
structure types by establishing and rappelling
off horizontal Tyrolean rope traverses between
tree canopies, collecting all leaves and measuring
their collection height using an ultrasonic range
finder (SONIN, Charlotte, North Carolina, USA)
with a sonic target to reduce erroneous returns.
Leaves were stored in zip lock bags with moist
paper towels until leaf area (cm2) was calculated
within 24 hours using a LI-3100 (LI-COR). A
significant linear relationship was shown be-
tween the cumulative percentage of leaf area
identified rebinned to comparable vertical (0.5 m)
and horizontal (pixel area of 0.3136 m2) resolu-
tion (P , 0.0001; R2 ¼ 0.4960; N ¼ 404), and no
significant difference in LAD values was identi-
fied in a matched pairs analysis (P . jtj ¼ 0.1253;
N ¼ 404). Virtual forests were then generated
through integration of the surface elevation and
3D LAD (cm2) data, which were used in the
subsequent modeling analyses.

Interior forest microclimate modeling
Interior forest climate data were compared to

interpolated TOC climate data at each study plot
center point. TOC values were derived from the
weighted average—based on elevation—of the
most proximate pair of TOC sensors. For
example, for a position located between the mid
and high TOC towers the interpolated TOC
values would be:

p ¼ ðTOCinterior � TOCmidÞ
ðTOChigh � TOCmidÞ

ð17Þ
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TOCinterp¼ðTOChigh 3 pÞ þ
�

TOCmid 3ð1� pÞ
�
:

ð18Þ

Interpolated total PAR values were propor-
tioned according to diffuse and direct PAR
measured at the mid elevation tower which was
the only location with a BF3 direct vs. diffuse
sensor installed. Separate direct and diffuse PAR
models were developed. Direct PAR utilized
solar azimuth and elevation calculated through
interpolation of National Aeronautics and Space
Administration (NASA) Jet Propulsion Labora-
tory (JPL) planetary ephemeris (DE405; http://
ssd.jpl.nasa.gov) using IDL code modified from
that provided by Craig Markwardt (http://cow.
physics.wisc.edu/;craigm).

The direct PAR model calculated the distribu-
tion of leaf area density at 0.25 m increments
from zero to 100 m distance from the sensor
directly towards the sun position, which was
calculated at one-minute intervals. LAD was then
adjusted according to its distance from the sensor
using the following equation:

DirSF ¼
X�

� k 3 sd 3 LADðxÞ
�

ð19Þ

where DirSF is the direct structure factor, k is the
extinction parameter set to 0.025, sd is the
straight-line Euclidean distance from the sensor
(x), and LAD is the leaf area density (cm2)
encountered at distance (x). DirSF calculation
was limited to the daytime, defined as solar
elevations �258. The diffuse PAR model used the
same approach for each location to calculate the
diffuse structure factor (DifSF) but averaged
DirSF values from 36 combinations of azimuth
and elevation (.22.58) equally distributed across
a hemisphere above the sensor.

Total interior forest PAR was modeled at one-
hour intervals using the averaged PAR and
structure data. Interior PAR was calculated:

tPARintðtÞ ¼ aþ b 3 tPARTOCðtÞ � c 3 tDirSF

þ d 3 DifSF ð20Þ

PARintðtÞ ¼ 1:09

3
��

tPARintðtÞ3 0:24þ 1
�
�ð1=0:24Þ

�
: ð21Þ

The constants a–d equal: 2.3638, 0.3633, 0.0304
and 3.792E-04, respectively. tPARtoc and tDirSF
represent power transformed (t; i.e., (U�k)� 1/k)

versions of the raw variables conducted to
normalize residual distributions using lambda
values of 0.28 and 0.44, respectively. Parameter-
ization was conducted in JMP on a randomly
selected 50% of the available interior forest data
during daylight hours. The remaining data were
used to validate the model. Both the parameter-
ization model (P , 0.0001, R2¼ 0.6566, N¼ 355)
and validation (P , 0.0001, R2¼ 0.6622, N¼ 371)
were highly significant.

Average air temperature was predicted at each
sensor location using the environmental lapse
rate calculated at 30-minute increments as
follows:

TemppredðtÞ ¼ ðINTelev�MIDelevÞ3 MLRðtÞ
þMIDtempðtÞ ð22Þ

where Temppred is the predicted air temperature
(8C) at time t and INTelev is the elevation at the
interior forest sensor. MIDelev and MIDtemp is the
elevation and air temperature at the mid eleva-
tion climate tower, and MLR is the mean
environmental lapse rate calculated among the
high, mid and low elevation climate towers. This
relationship was highly significant (P , 0.0001,
R2 ¼ 0.7975, N ¼ 4713).

The final forest interior air temperature model
compared the measured versus the predicated air
temperatures as influenced by DirSF and DifSF
as:

Tempmeas

Temppred

 !
¼ a� b 3

ffiffiffiffiffiffiffiffiffiffiffiffi
DirSF
p

þ c 3 DifSF:

ð23Þ

The constants a–c equal: 1.014, 6.1687E-04, and
4.984E-06, respectively. The sample size was
reduced as DirSF was calculated for daytime
hours only. The model was parameterized and
validated as described for PAR above and was
highly significant (P , 0.0001, R2 ¼ 0.8914, N ¼
1529).

Data integration
An overview of the data integration approach

is illustrated in Fig. 1. For each location where
ecophysiological data were collected, 4400 min-
utes of daytime climate data were randomly
selected between December 17, 2010 and June 1,
2011, averaged to half hour intervals, and the
following variables were calculated using the
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field data collection, climate models and remote
sensing data: (1) ground elevation (m), (2)
canopy, plant and leaf height above forest floor
(m), (3) DBH (cm), (4) mean and standard
deviation of modeled available PPFD, and (5)
modeled average air temperature (8C). Highly
correlated variable groups were identified using
Pearson correlation analysis (.0.7), resulting in
the final selection of the leaf trait predictor
variables: (1) leaf height, (2) PPFD mean and (3)
SD, and (4) mean air temperature. Ground
elevation, although highly correlated with mean
air temperature, was included as well to account
for potential unquantified variation in climate
and forest dynamics along the elevation gradient.

Predictor variables were transformed, when
appropriate, to create a normal distribution, and
the importance of all variables on each ecophys-
iological variable was assessed using: (1) com-
munity scale; best subsets multiple regressions
with the most significant combinations of pre-
dictor variables identified using the adjusted R2

value, and (2) for the dominant canopy and
understory species—M. polymorpha (Ohia) and C.
glaucum, respectively—and the entire species
community, linear regressions between selected
ecophysiological variables and leaf height, PPFD
mean, and air temperature mean. Separate
general linear models were fit to understand
differences due to the following classifications:
(1) species, (2) life-form, (3) exotic vs. native, (4)
height strata, (5) canopy position, and (6) M.
polymorpha or other. Life forms were defined as
herb, fern, liana, shrub, tree fern, understory tree
or canopy tree. Height strata were defined as
ground, mid or upper. Canopy positions were
defined as understory or canopy. Models were
compared using AIC values (Mazerolle 2006,
Mutua 1994) and weight (Anderson 2008), which
adjusts for differences in parameter size, using
identical data sets. AIC provides a method to
compare relative model goodness of fit for a
specific foliar variable, with models Di . 10
above the minimum AIC having little support
(Burnham and Anderson 2004). For our analysis,
we kept the two best models and discarded those
having AIC values Di . 20.

We sought to identify groups having similar
ecophysiological characteristics using two ap-
proaches. We used principal components analy-
sis (PCA; Reich et al. 1999) to assess if general

trends in ecophysiological variables (N ¼ 22)
existed. We then identified significant correla-
tions between PCA axes and box-cox trans-
formed, for increase normality, PPFD and air
temperature. We clustered the foliar dataset into
three groups through K-means analysis using the
first three PCA axes and compared ecophysio-
logical, structural, and climatic variables among
these groups using one-way ANOVAs and
Pearson tests.

RESULTS

Plant diversity and structure
Top-of-canopy (TOC) height declined from

20.4 6 8.1 m at 1000–1049 m elevation to 13.2
6 5.7 m at 1300–1349 m elevation (Fig. 3). LAI
remained constant across the study area (3.9 6

1.4 m2/m2). A total of 24 species were identified
in the plant diversity transects (Table 1). Impor-
tance values ranged widely, with M. polymorpha,
C. glaucum and C. trigynum identified as the three
most important species (Table 2). The canopy
was comprised almost exclusively of M. poly-
morpha, although its seedlings and saplings also
existed in more open understory environments,
with the next strata comprised mostly of C.
trigynum, C. rhynocarpa, and I. anomala. A final
strata occurring at 3–5 m height consisted almost
entirely of C. glaucum. Species growing below 2
m included an abundance of the exotic species H.
gardnerianumi and occasional P. cattleianum indi-
viduals. Open wet areas at low elevations were
dominated by the exotic species P. punctata
(Smartweed) below 1 m height, with shrubs
including young M. polymorpha and the exotic
species C. hirta.

Microclimate
Table 3 summarizes mean TOC climatic condi-

tions recorded at the low, mid and high elevation
towers between December 17, 2010 and May 16,
2011. Seasonal dynamics of PPFD and air tem-
perature are provided in Fig. 4 and diurnal
dynamics are provided in Fig. 5. Measured mean
air temperature dropped from 15.938 to 14.138C
from the low to high elevation tower respectively.
The low elevation tower received 58% more
rainfall than the high elevation tower. Total
daytime PAR was nearly equal among the low,
mid and high elevation locations with the mean
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Table 1. Plant species occurring within diversity transects.

Family Genus Species Common name Status Life-form

Myrtaceae Metrosideros polymorpha Ohia Native Canopy tree
Cibotiaceae Cibotium glaucum Hapu’u-pulu Native Tree fern
Araliaceae Cheirodendron trigynum Olapa Native Understory tree
Polygonaceae Persicaria punctata Water smartweed Exotic Herb
Rubiaceae Coprosma rhyncocarpa Pilo Native Understory tree
Aquifoliaceae Ilex anomala Hawai’i holly Native Understory tree
Zingiberaceae Hedychium gardnerianum Kahili ginger Exotic Herb
Dryopteridaceae Dryopteris wallichiana Laukahi Native Fern
Aspleniaceae Asplenium contiguum Asplenium Native Fern
Pandanaceae Freycinetia arborea Ie’ie Native Liana
Rosaceae Rubus hawaiensis Akala Native Shrub
Celastraceae Perrottetia sandwicensis Olomea Native Understory tree
Dryopteridaceae Dryopteris glabra Kilau Native Fern
Cyatheaceae Cyathea cooperi Australian tree fern Exotic Tree fern
Myrtaceae Psidium cattleianum Strawberry guava Exotic Understory tree
Rubiaceae Psychotria hawaiiensis Kopiko Native Understory tree
Athyriaceae Athyrium microphyllum Akolea Native Fern
Melastomataceae Clidemia hirta Koster’s curse Exotic Shrub
Rutaceae Melicope clusiifolia Alani Native Understory tree
Liliaceae Astelia menziesiana Painiu Native Herb
Ericaceae Vaccinium calycinum Ohelo Native Shrub
Rubiaceae Hedyotis hillebrandii Manono Native Understory tree
Apocynaceae Alyxia olviformis Maile Native Liana
Campanulaceae Clermontia parviflora Haha Native Shrub

Table 2. Plant density (no. individuals/1000 m2), volume (basal area 3 height cm3), frequency (% transects

occurring) of species found within diversity transects. Species are ranked by their importance value (IV).

Sampled (cluster) ¼ whether foliar samples were collected and to which cluster the species was assigned.

Species taxonomic information is provided in Table 1. Height and DBH values are expressed as mean 6 SD.

Common name Density Vol. (cm3) Freq. (%) Height (m) DBH (cm) IV Rank Cluster

Ohia 85 1108099715 100 11.6 6 8.5 63.7 6 66.1 3522722 1 1
Hapu’u-pulu 250 20514819 100 2.8 6 2.0 14.3 6 7.8 66115 2 1
Olapa 137 4620076 100 4.5 6 3.4 5.0 6 5.0 15285 3 1
Water smartweed 4533 7120 37.5 0.5 6 0.0 0.2 6 0.0 12379 4
Pilo 91 1382914 100 3.8 6 2.8 3.7 6 3.5 4871 5 3
Hawai’i holly 50 894898 75 3.1 6 2.4 4.1 6 5.9 3151 6 1
Kahili ginger 506 244571 50 1.5 6 0.3 2.0 6 0.1 2262 7 2
Laukahi 98 398655 75 0.9 6 0.3 7.2 6 2.0 1703 8 3
Asplenium 59 179112 50 0.8 6 0.2 6.8 6 1.3 842 9
Ie’ie 148 12729 37.5 0.8 6 0.4 1.0 6 0.3 526 10 3
Akala 67 9096 62.5 1.0 6 0.4 0.9 6 1.0 354 11 2, 3
Olomea 11 49204 50 3.4 6 2.0 2.8 6 2.1 300 12 2, 3
Kilau 33 30152 50 0.8 6 0.3 2.5 6 2.7 298 13
Australian tree fern 4 62924 12.5 1.2 6 0.5 12.5 6 0.7 240 14
Strawberry guava 30 11007 37.5 1.7 6 1.1 1.03 6 0.6 203 15 3
Kopiko 11 27416 37.5 2.8 6 1.9 2.3 6 1.6 202 16
Akolea 13 13534 50 0.8 6 0.3 3.8 6 1.3 193 17
Koster’s curse 41 13686 12.5 1.2 6 0.6 1.3 6 0.9 184 18 2
Alani 9 32768 12.5 4.3 6 1.5 3.0 6 1.4 156 19
Painiu 2 33450 12.5 1.0 6 0.0 14.0 141 20
Ohelo 28 664 12.5 1.2 6 0.4 0.4 6 0.2 107 21
Manono 4 5431 25 2.0 6 2.1 1.9 6 1.6 86 22 3
Maile 13 41 12.5 1.0 6 0.0 0.2 6 0.0 64 23
Haha 2 576 12.5 1.5 6 0.0 1.5 36 24
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diffuse percentage equaling 66% of daily PAR.

Leaf trait variation
Foliar C:N was highly correlated with SLA.

Amax was significantly correlated with foliar %N
and all CO2 response variables, but not with
LMA. Day respiration, however, was correlated
with LMA (Table A1). General linear model
results of categorical variables are presented in
Table 4 and Table 5, with the most significant
classifications being species (22/22), life form (18/
22), and height strata (6/22). Elevation class was
the most significant predictor of foliar d15N
values. Both species and height strata were the
most significant predictors of the light compen-
sation point. Exotic versus native species, respec-
tively, had significantly (a¼ 0.05) greater foliar N
(2.0 6 0.8 vs. 1.4 6 0.50), d15N (�0.75 6 1.8 vs.
�2.7 6 1.8), IS50% (29.6 6 16.8 vs. 14.5 6 12.9)
and Amax (6.8 6 5.0 vs. 3.6 6 1.8), but
significantly lower day respiration (�0.34 6

0.28 vs. �0.52 6 0.24). In addition, Vcmax (19.3
6 14.0 vs. 12.0 6 6.6), Jmax (14.7 6 10.5 vs. 9.4 6

5.8), and TPU (3.4 6 2.5 vs. 2.1 6 1.1) were
significantly higher for exotic as compared to
native species.

The best subsets multiple regression analysis
revealed strong climatic and structural determi-
nants of foliar ecophysiology (Tables 6 and 7).
Most leaf traits were correlated with leaf height
(20 of 24), followed by modeled mean PPFD (14
of 24), elevation (7 of 23), and modeled mean air
temperature (7 of 24). Of all leaf traits, leaf height
was most significantly correlated with foliar C
(positive; adjusted R2 ¼ 0.40), followed by SLA
(negative; adjusted R2 ¼ 0.35) and IS50% (nega-
tive; adjusted R2 ¼ 0.36). Amax, and associated
%N, were strongly positively correlated with
modeled mean PPFD, and foliar C:N was

negatively correlated with modeled mean PPFD.
While d15N was significantly positively correlat-
ed with modeled mean air temperature (adjusted
R2 ¼ 0.28), d13C was not correlated with any
structural or climatic variables. Rates of respira-
tion increased with modeled air temperature but
decreased with increasing leaf height.

Linear regressions between leaf traits and the
predictor variables defined in Table 8 were
calculated for M. polymorpha and C. glaucum
(Table 8A, B), the overstory and understory
species having the greatest importance values
(Table 2), as well as across the entire community
(Table 8C). Significant positive relationships
existed between modeled mean PPFD and Amax

across the community (adjusted R2 ¼ 0.26), and
at the species scale for M. polymorpha (adjusted
R2 ¼ 0.13) and C. glaucum (adjusted R2 ¼ 0.40).
Light saturation was strongly correlated with
modeled air temperature for C. glaucum. The
dynamic response time (IS50%) of C. glaucum
increased in higher modeled light environments,
while that of M. polymorpha did not. Although
increases in foliar C:N were shown at the
community level (adjusted R2 ¼ 0.18), no such
relationships existed within the individual spe-
cies.

Leaf trait clusters
Principal components 1–3 encompassed 33.7%,

17.4%, and 10.6%, respectively, for a cumulative
total of 62.6% of the variation (Table 9). Linear
regression analysis revealed PCA axis one to
have a significant positive correlation with
modeled mean PPFD [F ¼ 38.6 (P ,0.0001),
adjusted R2 ¼ 0.39, P � 0.0001, df ¼ 77], while
PCA axis two and axis three did not have
significant correlations with modeled mean
PPFD [F ¼ 2.5 (P ¼ 0.12) and 3.6 (P ¼ 0.06),

Table 3. Daytime (sun elevation . 258C; mean 6 SD) climatic conditions at top of canopy tower low, mid, and

high locations between December 17, 2010 and June 19, 2011. Rainfall is the total over this period.

Climate variable Low (1052 m) Mid (1180 m) High (1353 m)

Air temperature (8C) 17.5 6 2.0 16.9 6 2.0 16.2 6 2.2
Relative humidity (%) 79.3 6 11.3 85.4 6 13.5 77.2 6 12.1
Windspeed (m/s) 2.5 6 1.8 3.0 6 1.3 2.1 6 1.3
Wind direction (degrees true north) 258 6 43 280 6 66 252 6 96
Direct PPFD (%) 34 6 35
Diffuse PPFD (%) 66 6 35
PPFD (lmol�m�2�s�1) 932 6 572 909 6 556 937 6 559
Rainfall (mm total) 684.4 399.8

Note: PPFD¼ photosynthetic photon flux density.
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respectively]. Multiple regression analysis using

modeled mean PPFD and modeled mean air

temperature as predictors and each individual

PCA axis as the response revealed PCA axis one

to have a significant positive relationship with

modeled mean PPFD but not with modeled

mean air temperature [model adjusted R2 ¼
0.35, P , 0.0001; MM-PPFD and MM-air tem-

perature F¼ 22.2 (P , 0.0001) and 0.04 (P¼ 0.85),

respectively] while PCA axis two had a signifi-

cant positive relationship with air temperature,

but not PPFD [model adjusted R2 ¼ 0.17, P ¼
0.0003; MM-PPFD and MM-air temperature F ¼

Fig. 4. Measured daily average daytime (solar

elevation . 258) photosynthetic photon flux density

(PPFD; lmol�m�2�s�1), diffuse PPFD (%), and air

temperature (8C) at the mid elevation top-of-canopy

(TOC) climate tower. Julian dates extend from January

1, 2010 (40179 JD) through June 17, 2011 (40711 JD).

Fig. 5. Measured hourly mean daytime (solar

elevation . 258) photosynthetic photon flux density

(PPFD; lmol�m�2�s�1), diffuse PPFD (%), and air

temperature (8C) at mid elevation top-of-canopy

climate tower.
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Table 4. General linear model results for leaf traits versus taxonomic, ecological and structural categories (no.

parameters). Data are the Akaike Information Criteria (AIC) (adjusted R2) degrees of freedom and P. AIC

allows intra-row comparisons and models .20 above the minimum AIC have been removed.

Foliar variable Species (14) Life-form (7) Strata (3) Canopy (2)

%C 424 (0.51) 87**** 452 (0.27) 99****
%N 134 (0.44) 87**** 130 (0.43) 94**** 146 (0.30) 98****
C:N 733 (0.47) 87**** 738 (0.41) 94**** 752 (0.29) 98****
d13C 313 (0.36) 83**** 309 (0.34) 90****
d15N
Light saturation (AQ) 1356 (0.26) 86*** 1372 (0.08) 93* 1369 (0.07) 97* 1368 (0.07) 98**
Light compensation (AQ) 563 (0.33) 86**** 568 (0.26) 93**** 563 (0.27) 97**** 570 (0.21) 98****
Convexity (AQ) 508 (0.11) 87* 497 (0.15) 94**
Respiration (AQ) �16 (0.37) 86**** �3 (0.24) 93**** 0 (0.18) 97**** 6 (0.12) 98***
Amax (AQ), all 433 (0.53) 87**** 479 (0.20) 94***
Vcmax (ACi ) 668 (0.34) 84**** 687 (0.15) 91**
Jmax (ACi ) 644 (0.23) 84*** 652 (0.12) 91**
TPU (ACi ) 328 (0.34) 84**** 348 (0.14) 91**
Convexity (induction %) 19 (0.34) 78**** 37 (0.14) 85**
IS50% (induction) 724 (0.31) 77**** 740 (0.09) 88** 728 (0.19) 89****
WUE 369 (0.18) 80** 369 (0.08) 92**
SLA 928 (0.65) 81**** 954 (0.51) 88****
LMA 864 (0.59) 82**** 887 (0.45) 89****
Narea 99 (0.33) 81**** 103 (0.26) 88****
PNUE 882 (0.41) 81**** 904 (0.20) 88***
Amass 926 (0.65) 82**** 984 (0.32) 89****
IS50%/Amax 487 (0.15) 77* 483 (0.08) 89**

Notes: See Appendix: Table A3 for an explanation of abbreviations. * P, 0.05; ** P , 0.01; *** P , 0.001; **** P , 0.0001. Status
¼ invasive or native; Strata¼ low, mid or overstory position; Position¼ canopy or not; M. polymorpha¼ yes or no. Smartweed
(Persicaria punctata) is not included in these analyses. The curve from which variables are calculated is provided in parenthesis
following the variable name.

Table 5. General linear model results for leaf traits versus taxonomic, ecological and structural categories (no.

parameters). Data are the Akaike Information Criteria (AIC) (adjusted R2) degrees of freedom and P. AIC

allows intra-row comparisons and models .20 above the minimum AIC have been removed.

Foliar variable M. polymorpha (2) Status (2) Elevation (2)

%C
%N
C:N 747 (0.32) 99****
d13C
d15N 393 (0.14) 95*** 376 (0.27) 95****
Light saturation (AQ) 1371 (0.04) 98* 1372 (0.03) 98*
Light compensation (AQ) 574 (0.17) 98****
Convexity (AQ) 499 (0.09) 99**
Respiration (AQ) 5 (0.14) 98****
Amax (AQ), all 479 (0.17) 99****
Vcmax (ACi )
Jmax (ACi ) 653 (0.06) 96** 650 (0.09) 96**
TPU (ACi )
Convexity (induction %) 38 (0.08) 90**
IS50% (induction) 742 (0.06) 89** 735 (0.13) 89*** 737 (0.11) 89***
WUE
SLA
LMA
Narea

PNUE
Amass

IS50%/Amax 480 (0.11) 89***

Notes: See Appendix: Table A3 for an explanation of abbreviations. * P, 0.05; ** P , 0.01; *** P , 0.001;**** P , 0.0001. Status
¼ invasive or native; Strata¼ low, mid or overstory position; Position¼ canopy or not; M. polymorpha¼ yes or no. Smartweed
(Persicaria punctata) is not included in these analyses. The curve from which variables are calculated is provided in parenthesis
following the variable name.
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0.03 (P ¼ 0.8741) and 10.6 (P ¼ 0.0017),
respectively] (Appendix: Fig. A1). PCA axis three
was not significantly correlated with MM-PPFD,
MM-air temperature or any other spatial or
structural variables.

K-means analysis of these axes revealed three
distinct groups within the foliar dataset (Table 10
and Fig. 6), which following analysis were found
to be sorted by growth light environment (Table
11). The low light cluster had lower maximum
rates of photosynthesis (i.e., Amax and Amass),
including light saturation, but was able to reach
Amax quickly as compared to the medium and
high light clusters. Leaves in this cluster had
higher leaf mass per area, foliar %C, and water
use efficiency (WUE) and lower foliar %N, and
photosynthetic nitrogen use efficiency (PNUE).
The high light cluster had very high rates of Amax

(and Amass), PNUE, light saturation, triose
phosphate utilization (TPU), Vcmax, and Jmax.
While many values were similar to other clusters,
the medium light cluster was distinguished by

intermediate values of Amax, Amass, PNUE,
induction response time (IS50%), and lower
values of Vcmax, Jmax, light compensation and
saturation, and WUE. The medium light cluster
had the lowest leaf mass per area.

We identified taxonomic, climatic and struc-
tural differences among the clusters (Table 11).
The low light cluster was comprised of all tall
plants with large DBH values whose sampled
leaves occurred in low and less variable (i.e., low
modeled standard deviation of PPFD) light
environments. This cluster was composed entire-
ly of native species and dominated by the
dominant canopy species M. polymorpha and the
understory tree fern C. glaucum. The medium
light cluster was dominated by native species
growing in light environments intermediate
between the low- and high-modeled light clus-
ters and often situated within the mid height
strata. The high light cluster, similar in many
respects to the medium light cluster, was
composed of low height plants—the lowest strata

Table 6. Best subsets models of leaf traits versus structural and modeled mean and standard deviation (SD)

photosynthetic photon flux density (PPFD; lmol�m�2�s�1) and air temperature (8C). Data represents the t-ratio

(F-ratio) and P-value significance, with increasing *, **, ***, ****, and / representing P-values of 0.1, 0.05, 0.01,

0.001, and ,0.0001, respectively. PPFD SD was not found significant for any leaf traits and not included in the

table.

Leaf traits Elevation (m) Leaf height (m)

Modeled variables

PPFD mean Air temp mean

%C 7.33 (53.78) /
%N �4.15 (17.22) / 1.81 (3.28)*
C:N 5.01 (25.06) / �1.12 (1.25) NS
d13C
d15N 0.89 (0.7834) NS 6.15 (37.85) /
Light saturation (AQ) �2.2 (4.85)** 1.5 (2.24) NS
Light compensation (AQ) �1.84 (3.37)* 7.09 (50.26) /
AQE (3100)
Convexity (AQ) 2.46 (6.06)** 2.69 (7.24)***
Respiration (AQ) 1.75 (3.06)* �3.72 (13.82)**** 1.50 (2.25) NS
Amax� 5.63 (31.71) / 1.69 (2.87) NS
Vcmax (ACi ) 2.89 (8.35)*** 2.19 (4.78)** 4.51 (20.33) /
Jmax (ACi ) 2.36 (5.58)** 2.20 (4.82)** 3.98 (15.81) /
TPU (ACi ) 2.10 (4.43)** 3.78 (14.29)****
Convexity (induction %) 2.12 (4.50)** 4.16 (17.31) / �1.71 (2.91)*
IS50% (induction) �2.58 (6.64)** �4.27 (18.26) / 1.76 (3.09)*
WUE 3.24 (10.49)*** 0.67 (0.45) NS
SLA �6.86 (47.03) / �1.77 (3.15)*
LMA 6.74 (45.49) /
Narea 2.58 (6.66)** 3.00 (9.05)***
PNUE �2.85 (8.15)*** 1.42 (2.01) NS
Amass �4.70 (22.12) / 2.09 (4.39)**
IS50%/Amax �3.04 (9.24)*** �3.31 (10.99)*** 3.82 (14.59)****

Notes: See Appendix: Table A3 for an explanation of abbreviations. The curve from which variables are calculated is provided
in parenthesis following the variable name.

� Amax values combined from light response and induction response curves.
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of the forest—in high, but variable, modeled light

environments. Composition of this cluster had

abundant exotic species, including H. gardneria-

num and P. cattleianum. It is likely that an

additional cluster exists composed of top of

canopy full sunlight M. polymorpha leaves. Our

sampling effort did however include such leaves,

but on M. polymorpha trees located in gaps or

between taller individuals where rope traverses

were feasible. It was not feasible in this study to

sample leaves located at the top of canopy

position in the tallest emergent individuals.

In general, leaves from any individual species

were grouped in the same cluster (78 6 18%;

Table 2). A significant positive relationship

between Amax (log-transformed) and mean mod-

eled PPFD was found across the community the

entire dataset (adjusted R2¼ 0.25, P � 0.0001, N¼
152). However, individual clusters had different
Amax to mean modeled PPFD relationships. No
significant relationship existed for cluster one (P
¼ 0.2766, N ¼ 152), but a significant positive
relationship existed for cluster two (adjusted R2¼
0.16, P � 0.0072, N ¼ 44) and cluster three
(adjusted R2 ¼ 0.26, P � 0.0040, N ¼ 30; Fig. 7).

DISCUSSION

The main components of this project were
performed as follows: (1) development of a two-
dimensional map of LAI using airborne hyper-
spectral imagery; (2) derivation of a three-
dimensional LAD map through integration of
the two-dimensional LAI map with vertical
profiles provided through airborne wLiDAR; (3)
coding and validation of PAR and air tempera-
ture microclimate models integrating TOC cli-
mate measurements with forest structure from
the LAD map; and (4) integrating modeled
microclimate information with remote sensing
and detailed field data to predict leaf traits and
gas exchange dynamics for a suite of species
occurring within a range of forest structural
types (i.e., closed, open) along an elevation
gradient.

Remote sensing
While passive and active remote sensing

techniques have proven useful for large-scale
analyses (Asner et al. 2005), remote sensing
studies have historically been limited in their
ability for finer scale analyses of ecosystem
function. Recent advances have increased the
capacity of remote sensing to integrate with
ecosystems at scales appropriate for detailed
functional analysis (Chambers et al. 2007).
Space-borne hyperspectral imaging resulted in
development of techniques to link remote sens-
ing more directly to plant physiological traits
(Asner et al. 2004, 2005). Airborne hyperspectral
analysis provided finer spatial resolution studies,
allowing detection of species composition and
foliar properties (Carlson et al. 2007). Studies
using large footprint LiDAR (Koetz et al. 2007)
showed the utility of three-dimensional structur-
al information, and airborne platforms have now
integrated hyperspectral sensors with LiDAR
systems (Asner et al. 2007). With this fusion,

Table 7. Best subsets models of leaf traits versus

structural and modeled mean and standard devia-

tion (SD) photosynthetic photon flux density (PPFD;

lmol�m�2�s�1) and air temperature (8C). Data repre-

sents the t-ratio (F-ratio) and P-value significance,

with increasing *, **, ***, ****, and / representing P-

values of 0.1, 0.05, 0.01, 0.001, and ,0.0001,

respectively. PPFD SD was not found significant

for any leaf traits and not included in the table.

Leaf trait R2
Adjusted

R2 P N

%C 0.38 0.37 / 101
%N 0.29 0.27 / 97
C:N 0.31 0.30 / 98
d13C NS 96
d15N 0.29 0.28 / 96
Light saturation (AQ) 0.13 0.11 **** 95
Light compensation (AQ) 0.36 0.34 / 98
AQE (3100) NS 97
Convexity (AQ) 0.09 0.07 ** 98
Respiration (AQ) 0.23 0.21 / 97
Amax� 0.33 0.32 / 186
Vcmax (ACi ) 0.28 0.25 / 97
Jmax (ACi ) 0.25 0.23 / 98
TPU (ACi ) 0.22 0.21 / 98
Convexity (induction %) 0.35 0.33 / 90
IS50% (induction) 0.38 0.36 / 89
WUE 0.12 0.10 *** 93
SLA 0.36 0.35 / 93
LMA 0.33 0.32 / 96
Narea 0.11 0.09 *** 93
PNUE 0.17 0.15 **** 93
Amass 0.35 0.33 / 94
IS50%/Amax 0.18 0.16 **** 89

Notes: See Appendix: Table A3 for an explanation of
abbreviations. The curve from which variables are calculated
is provided in parenthesis following the variable name.

� Amax values combined from light response and induction
response curves.

v www.esajournals.org 18 May 2014 v Volume 5(5) v Article 57

BROADBENT ET AL.



simultaneous analysis of ecosystem structure and
foliar traits has become feasible (Asner and
Martin et al. 2008). There is now an increasing
application of sensor fusion to elucidate forest
properties at scales ranging from individual trees
to global analyses (Todd et al. 2003, Reitberger et
al. 2009, Zolkos et al. 2013).

A primary objective of many remote sensing
studies has been to understand forest function in
three dimensions spatially (Omasa et al. 2007).
Efforts to better understand spatial properties of
ecosystem dynamics, including productivity and
canopy chemistry (Asner and Martin 2008),
however, has been limited due to the difficulty
of acquiring maps of forest interior structure and
leaf area distribution (Houldcroft et al. 2005). In
tropical forests especially, this difficulty has
stemmed from the rapid extinction of the LiDAR
signal in the dense overstory, and by the
difficulties associated with collecting field pa-

rameterization and validation data within forest
canopies (Laman 1995). Methods developed in
this project have helped surmount some canopy
access issues, in particular, intra-crown access
using vertical transects off horizontal Tyrolean
traverses.

Spatial resolution represents a serious obstacle
to fully understanding forest dynamics. Interior
forest light is known to be the primary limiter of
photosynthesis in many tropical forests under-
stories (Whitmore 1996). The distribution of
foliage within a forest plays an integral role in
light distribution (Chazdon et al. 1988, Chen et
al. 1994, Montgomery 2004). Light that does
reach the understory arrives as either direct or
diffuse radiation, and global increases in diffuse
radiation are predicted for the next 100 years
(Mercado et al. 2009). Baldocchi and Wilson
(2001) highlighted this importance through a
modeling analysis which showed that differences

Table 8. Predictors of Hapu’u (Cibotium glaucum) and Ohia (Metrosideros polymorpha) leaf traits. Data represent the

slope (adjusted R2) degrees of freedom and P-value of linear regressions. PPFD and air temp are modeled for

each growth environment.

Leaf traits Leaf height (m)

Modeled variables

PPFD mean Air temp mean

A) Metrosideros polymorpha
Amax� NS 0.01 (0.13) 25* NS
Light saturation� NS NS NS
Day respiration� NS NS NS
Convexity�§ NS NS NS
IS50%� �0.56 (0.15) 20* NS NS
C:N NS NS NS
d13C NS NS NS
d15N 0.14 (0.13) 22* NS NS

B) Cibotium glaucum
Amax� �1.18 (0.26) 13* 0.02 (0.40) 13** 2.28 (0.61) 13***
Light saturation� �179.25 (0.28) 13* 2.8 (0.34) 13* 345.79 (0.65) 13***
Day respiration� 0.11 (0.64) 12*** NS NS
Convexity�§ NS NS NS
IS50%� NS 0.12 (0.27) 12* 12.19 (0.35) 12*
C:N NS NS NS
d13C NS NS NS
d15N NS 0.02 (0.27) 13 * NS

C) Community
Amax� �0.14 (0.05) 97* 0.01 (0.26) 97**** 1.67 (0.16) 97****
Light saturation� �11.56 (0.05) 96* 0.49 (0.06) 96** 91.59 (0.06) 96**
Day respiration� �0.02 (0.17) 96**** 0 (0.04) 96* NS
Convexity�§ 0.02 (0.08) 88** NS NS
IS50%� �1.11 (0.12) 87*** 0.03 (0.04) 87* 8.22 (0.13) 87***
C:N 0.97 (0.18) 97**** �0.03 (0.08) 97** NS
d13C NS NS NS
d15N NS 0.01 (0.13) 93*** 1.55 (0.29) 93****

Note: See Appendix: Table A3 for an explanation of abbreviations.
� Calculated from light response curves.
� Calculated from inductance response curves.
§ Convexity of raw inductance data.
*P, 0.05; ** P , 0.01; *** P , 0.001;**** P , 0.0001.
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in leaf distribution throughout the forest vertical
profile can alter forest net primary productivity
(NPP) by up to 50%, largely through alteration of
available PAR (Chazdon and Pearcy 1986a, b).
Without an improved understanding of interac-
tions between leaf area density distribution and
light major errors will continue to exist in forest
productivity models. However, no significant
advances have been made in modeling 3D
interior forest light dynamics at fine scales,
although advances using medium-large footprint
LiDAR are ongoing (Parker et al. 2001, Thomas et
al. 2006). This has been due to several reasons
including: (1) fine spatial scale of leaf area
density determining direct light, and (2) the lack
of a wLiDAR equipped remote sensing platform
(Mallet and Bretar 2009) and decomposition
algorithms (Wu et al. 2011) enabling detailed
3D analyses at a high spatial resolution. Howev-
er, even field-based approaches have encoun-
tered difficulties and required inclusion of
extensive stand structural information (Sonohat
et al. 2004).

The development of the Carnegie Airborne
Observatory integrating high pulse rate wave-
form LiDAR with a hyperspectral sensor has
begun to overcome limitations to forest interior

Table 9. Leaf trait principal component analysis (PCA)

eigenvectors. PCA 1 and 2 have significant positive

relationships with modeled mean photosynthetic

photon flux density (lmol�m�2�s�1) and modeled

mean air temperature (8C), respectively.

Foliar variable PCA 1 PCA 2 PCA 3

%C �0.126 0.273 0.117
%N 0.236 �0.279 0.215
C:N �0.248 0.296 �0.0541
d13C �0.006 0.277 �0.074
d15N 0.201 �0.063 0.040
Light saturation (AQ) 0.254 0.179 �0.322
Light compensation (AQ) �0.246 0.179 �0.077
AQE (3100) 0.004 0.057 �0.349
Convexity (AQ) �0.103 �0.080 0.419
Respiration (AQ) 0.244 �0.141 0.183
Amax� 0.326 0.178 �0.094
Vcmax (ACi ) 0.271 0.239 0.213
Jmax (ACi ) 0.236 0.253 0.244
TPU (ACi ) 0.284 0.216 0.190
Convexity (induction %) 0.163 0.282 0.139
IS50% (induction) 0.078 �0.285 �0.153
WUE �0.079 0.082 0.144
SLA 0.191 �0.269 �0.173
LMA �0.183 0.310 0.140
Narea 0.110 �0.130 0.368
PNUE 0.281 0.173 �0.285
Amass 0.341 0.074 �0.101

Notes: See Appendix: Table A3 for an explanation of
abbreviations. The curve from which variables are calculated
is provided in parenthesis following the variable name.

� Amax values combined from light response and induction
response curves.

Table 10. Leaf trait values (mean 6 SD) for K-means low, medium and high modeled light clusters and results of

among cluster one-way ANOVAs sorted by the adjusted R2 value.

Leaf trait

Modeled light environment

Adjusted R2 PLow Medium High

Cluster size (N ) 40 22 15
Amax (AQ) 3.2 6 1.2 3.4 6 0.9 7.4 6 1.7 0.64 ,0.0001
Amass 30.4 6 13.2 55.4 6 18.2 110.8 6 42.7 0.64 ,0.0001
PNUE 34.8 6 15.8 45.2 6 18.4 85 6 30.3 0.47 ,0.0001
LMA 108.8 6 18.7 64.4 6 16.6 77.3 6 36.1 0.44 ,0.0001
%C 47.8 6 1.4 44.5 6 1.9 45.6 6 2.6 0.40 ,0.0001
SLA 95 6 18.7 166.2 6 47 154.5 6 65.7 0.40 ,0.0001
Light saturation (AQ) 227.9 6 157.6 221.8 6 124.4 554.9 6 225.4 0.37 ,0.0001
C:N 40.2 6 10.3 26.7 6 6.8 27.1 6 10.6 0.32 ,0.0001
IS50% (induction) 8.3 6 4.2 22.3 6 13.9 26.2 6 18.9 0.31 ,0.0001
TPU (ACi ) 2 6 1 1.7 6 0.8 3.7 6 1.6 0.30 ,0.0001
%N 1.3 6 0.3 1.9 6 0.7 1.9 6 0.6 0.27 ,0.0001
Vcmax (ACi ) 12 6 6.1 9.2 6 4.3 20.5 6 9.2 0.26 ,0.0001
Jmax (ACi ) 9.6 6 5.2 6.9 6 3.6 16.3 6 9.2 0.23 ,0.0001
Light compensation (AQ) 9.4 6 3.8 5.7 6 2.7 8.2 6 3.3 0.17 0.0004
WUE 6.9 6 1.6 5.2 6 1.5 5.6 6 1.9 0.15 0.0008
Respiration (AQ) �0.5 6 0.2 �0.4 6 0.2 �0.5 6 0.2 0.14 0.0017
Convexity (induction %) 0.5 6 0.3 0.3 6 0.2 0.4 6 0.3 0.14 0.0017
d13C �30.2 6 1.3 �31.1 6 1.8 �30.1 6 1.1 0.06 0.0427
d15N �2.8 6 1.6 �2.8 6 1.9 �2.3 6 1.7 NS NS
AQE (3100) (AQ) 6.8 6 2.5 6.5 6 0.9 6.7 6 0.8 NS NS
Convexity (AQ) 3.3 6 3.2 2.6 6 2.1 1.9 6 1 NS NS
Narea 1.4 6 0.3 1.2 6 0.7 1.3 6 0.4 NS NS

Notes: See Appendix: Table A3 for an explanation of abbreviations. The curve from which variables are calculated is provided
in parenthesis following the variable name.
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microclimate modeling (Asner et al. 2007). The
data collected for this study is among the highest
spatial resolution available and allows us to test
the feasibility of modeling microclimate dynam-
ics at a temporal and spatial scale directly
comparable to the scale of a leaf’s growth
environment. Future improvements to the PPFD
and air temperature microclimate models we
develop and parameterize in this study would
include the use of interior forest PAR sensors
distinguishing between direct and diffuse light
and parameterization for other tropical forests
with differing structure and gap dynamics
(Kellner and Asner 2009). This would allow for
an improved understanding of interactions be-
tween forest structure and the direct/diffuse light
ratio versus the approach used in our study that
combined direct and diffuse light as total PAR.

This study represents a development and
validation step towards a rapid large-scale
remote sensing based approach to model de-
tailed forest productivity. Johnson and Smith
(2006) have highlighted the need for such data.
In addition, Alton et al. (2007) state that
understanding how climate change will interact
with plant photosynthesis is a key issue requiring
further study. An approach built off an airborne
system allows for rapid and economic collection
of detailed forest structural measurements, and
thereby models of microclimate and foliar eco-
physiology, over a wide variety of forest types.
Such efforts will enable a more unified under-
standing of climate change effects on the three-
dimensional dynamics of forest photosynthesis
and physiology at larger scales. For example,
such information would be appropriate for
integration with flux towers, which are providing
significant insight into forest productivity dy-
namics (Schwalm et al. 2010).

Sources of leaf trait variation
Many factors influence a leaf’s physiological

traits, including: (1) structural parameters, such
as the plant’s height (Kenzo et al. 2006); and (2)
site specific differences, such as general climate
(Reich et al. 1996) or soil fertility (Ordoñez et al.
2009). Inter-species differences (Hikosaka 2004),
result from divergent competitive growth strat-
egies (Poorter et al. 2006) or simply life form
(Wright et al. 2005), while intra-species occur as
individual plants optimize their nutrient alloca-

Fig. 6. Principal leaf trait clusters identified through
K-means analysis. Low, medium and high light
clusters are represented by the colors red, blue, and
green, respectively.
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tion to maximize productivity (Field and Moon-
ey 1986, Hirose and Werger 1987, Hollinger
1989). The importance of vertical distributions
in leaf traits, representing broad changes in
micro-climate (Kumagai et al. 2001) and hydrau-
lic limitations (Taylor and Eamus 2008), has been
identified in many studies (Domingues et al.
2005). Leaves positioned in the upper canopy
generally increase net CO2 uptake while those
situated in the lower canopy have reduced (or
negative) uptake as the proportion of mainte-
nance respiration costs are increased relative to C
gain (Ellsworth and Reich 1993). Surprisingly,
our analysis showed no correlation between leaf
height and mean daily PPFD (Table 12). This
difference is likely due to the forest structure in
our study area, having a low LAI open canopy
with dispersed tall relatively small DBH trees,
differing from those in many tropical areas that
have very high LAI canopies with heavily
shaded forest interiors. Given this, horizontal
differences in topography, low to mid-story leaf
area, and gap dynamics may be dominant
controls over microclimate variation, rather than
vertical gradients as found in other studies in
tropical forests (Domingues et al. 2005). A broad
suite of leaf traits have been shown to co-vary,
including positive relationships between foliar
%N and Amax (Field and Mooney 1986, Reich et
al. 1997), as we likewise find in this study
(Appendix: Tables A1 and A2). This relationship

partly results from the availability of photosyn-
thetic enzymes limiting photosynthetic capacity
(Field 1983). In addition to leaf N concentration
and Amax, leaf photosynthetic induction rates,
i.e., the activation and synthesis of photosynthe-
sis related biochemical components and stomatal
movements (Pearcy 1990) vary with both species
and growth light environment (Bazzaz and
Carlson 1982, Portes et al. 2008).

Species and structure
The single greatest source of leaf trait variation

found in our study was inter-species differences
(Table 4). Wright et al. (2004) used a global
database of leaf traits, including 2,548 species,
and found large variation among functional
groups but strong co-variation among leaf traits,
consistent with changes in species growth strat-
egies along a continuous ‘leaf economics spec-
trum’ (Wright et al. 2004), constructing short
lived, low LMA, high Amax leaves to long lived,
high LMA, low Amax leaves. Likewise, Popma et
al. (1992) found variation among species resulted
from specialization to different growth environ-
ments, with gap-independent species producing
nutrient poor leaves with low photosynthetic
rates. In addition, they found that species
adapted growing in a wide range of light
environments show larger phenotypical plastic-
ity in leaf traits. Markesteijn et al. (2007) also
found leaf trait variation among 43 tropical forest

Table 11. Forest elevation, structure and micro-climate values (mean 6 SD) for low, medium and high light

environment K-means clusters and results of among cluster one-way ANOVAs. Categorical classifications are

% true and differences among clusters are assessed using the Pearson test.

Variable

Modeled light environment

Adjusted R2 v2 PLow Medium High

Cluster size (N ) 40 22 15
Elevation (m) 1176 6 124 1173 6 124 1090 6 105 NS NS
Canopy height (m) 21.6 6 6.8 18.4 6 8.2 21.1 6 9.6 NS NS
Total plant height (m) 12.8 6 9.5 2.7 6 2.4 2.6 6 1.6 0.33 ,0.0001
Leaf height (m) 7.5 6 5.1 1.5 6 0.5 1.8 6 1.2 0.38 ,0.0001
DBH (cm) 57.3 6 59.7 9.3 6 4.5 11.2 6 2.7 0.26 ,0.0001
Airborne LAI (m2) 4.1 6 0.3 4.1 6 0.4 4.1 6 0.3 NS NS
Modeled mean PPFD (lmol�m�2�s�1) 173 6 27.8 226 6 94.5 318 6 203.2 0.21 ,0.0001
Modeled SD PPFD (lmol�m�2�s�1) 98 6 14.4 121 6 40.0 157 6 75.5 0.21 ,0.0001
Modeled mean temperature (8C) 16.9 6 0.5 17 6 0.7 17.6 6 0.7 0.13 0.0018
Native spp. (%) 100 87 67 13.4 0.0013
M. polymorpha (%) 45 0 7 18.7 ,0.0001
Canopy position (%) 78 42 7 44.4 ,0.0001
Height strata: Upper (%) 53 27 0 33.5 ,0.0001
Height strata: Middle (%) 40 43 47 ... ...
Height strata: Lower (%) 8 30 53 ... ...
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tree species to be dominated by inter-species

differences, with short-lived pioneer species

having the greatest leaf trait plasticity.

Many studies in Hawaii have focused on

differences between species of exotic and native

origin (Hughes and Denslow 2005). This topic is

of conservation importance as many native

ecosystems are undergoing invasion in which

native dominated species composition becomes

altered or dominated by exotic species, resulting

in changes in composition, structure, and other

ecological properties (Vitousek et al. 1987).

Among other reasons, exotic species may invade

native ecosystems following disturbance or when

native communities have low resource use

resulting in resource availability, termed the

Fig. 7. Relationships (log-log regressions) between Amax (maximum CO2 lmol�m�2�s�1) and modeled mean

daily PPFD (lmol�m�2�s�1) for the entire community and modeled low, medium and high light leaf trait clusters.

Regressions for the community and modeled medium and high light leaf trait clusters are significant (P , 0.05).
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‘fluctuating resource hypothesis’ (Funk and
Vitousek 2007). Funk and Vitousek (2007) stud-
ied the resource use efficiency (RUE) of invasive
and native species and found that invasive
species used limiting resources more efficiently,
as indicated by higher photosynthetic rates
(Amax), higher photosynthetic nitrogen use effi-
ciency (PNUE), although water use efficiency
(WUE) was not different. Asner et al. (2006) used
remote sensing coupled with the CASA carbon
cycle model and found that growth rates of M.
faya, an invasive species, were 16–44% higher
than M. polymorpha. In our study, exotic species
exhibited significantly greater rates of photosyn-
thesis and nutrient use, including higher foliar N
and Amax. These findings are in line with other
studies showing higher growth rates on non-
resource limited sites, a reasonable assumption
for our study area given the young age of the
substrate. The lack of resource limitation is also
exhibited in the non-significance of PNUE
between our exotic and native species, a result
found by Funk and Vitousek (2007).

Light and air temperature
Photosynthetic active radiation is a dominant

limiting factor to total forest photosynthesis
(Whitmore 1996, Kull 2002, Graham et al. 2003)
and its availability plays a major role in survival,
growth, ecology and physiology of forest plants
(Chazdon and Pearcy 1986a, Myneni and Gana-
pol 1992), especially in the understory (Capers
and Chazdon 2004). Photosynthetic active radi-
ation dynamics vary greatly between forests of
different stand architecture, even when species
composition remains the same (Sonohat et al.
2004). In addition to light, air temperature is a

primary determinant of photosynthesis and
respiration (Berry and Bjorkman 1980) and
increases in mean annual temperature (MAT)
have been shown to correspond to increased total
net primary productivity (Raich et al. 2006). We
see the importance of these two environmental
gradients expressed in our PCA analysis, with
axis one being significantly correlated with
modeled light and axis two correlated with
modeled temperature. The fact that the first two
axes encompass only 51% of the variability in leaf
traits across our community may be partly
explained by the exclusion of species, identified
as a significant source of leaf trait variation, from
the PCA. Preliminary analysis on our dataset
does reveal the possibility of models with greater
significance (PCA 1 vs. MM-PPFD; adjusted R2¼
0.58, P , 0.0001, df ¼ 77) and merits further
investigation.

Differences in light and temperature in the
plant growth environment are directly correlated
with changes in leaf photosynthetic capacity, as
well as a broad suite of ecophysiological charac-
teristics (Wright et al. 2004, 2005). Field (1983)
showed that plants optimize the distribution of N
within their leaves according to the distribution
of daily photosynthetic active radiation. Evans
and Poorter (2001) found that photosynthesis
was three times greater in ten dicotyledonous C3

species grown under 1000 versus 200
lmol�m�2�s�1 PPFD, however photosynthesis
per unit leaf dry mass was not significantly
different due to increased specific leaf area (SLA)
but constant nitrogen concentration. Hollinger
(1989) showed that leaf N content and Amax

followed vertical gradients according to available
PPFD in the forest canopy. However, relation-

Table 12. Pearson correlations between elevation and forest structure variables and modeled mean and standard

deviation (SD) photosynthetic photon flux density (PPFD; lmol�m�2�s�1) and air temperature (8C). Only

correlations having P-values , 0.05 are shown. * P , 0.01; ** P , 0.001. Row numbers refer to numbered

column variables.

Variable 1 2 3 4 5 6 7 8

1. Elevation (m)
2. Canopy height (m) �0.56**
3. Plant height (m) 0.27*
4. Leaf height (m) 0.31* 0.93**
5. Total canopy height (%) 0.28* �0.22 0.79** 0.83**
6. DBH (cm) 0.8** 0.82** 0.74**
7. Modeled mean PPFD �0.39** �0.48** �0.52** �0.59** �0.52**
8. Modeled SD PPFD �0.55** �0.53** �0.6** �0.61** �0.53** 0.85**
9. Modeled mean air temperature �0.92** 0.43 �0.21 �0.25 �0.42** �0.32* 0.69** 0.76**
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ships are not linear and photosynthesis of plants
located in the understory often become light
saturated at less than half of full sunlight
intensity (Lambers et al. 1998). This may partly
explain the low correlation we found between
mean PPFD and light saturation at the commu-
nity scale.

In our study, most leaf traits did follow vertical
gradients, as shown by the significance of leaf
height, but were also simultaneously correlated
with light and air temperature; likely resulting
from inconsistencies in the leaf height to PPFD
relationship, which will be focus of future
studies. Chazdon and Field (1987) found that in
understory plants the light environment was
only able to explain a maximum of 35.1% of the
variation in Amax, indicating that other determi-
nants, including climatic variation, topography
or resource competition, were playing important
roles. They also found that understory plants
(versus plants growing in open gap environ-
ments) were less able to adjust Amax to variation
in the light intensity of their growth environ-
ment, although compensation through increased
light use efficiency was possible (Chazdon and
Pearcy 1986b). Similar to their results, however,
we found that modeled light variability did not
significantly correlate to Amax, while simpler
measures, such as canopy openness in their
study, or in the case of our study modeled mean
daily PPFD, did. This is similar to the percentage
of variation in Amax explained for the C. glaucum,
the dominant understory species in our study
area. While direct radiation accounts for between
10 and 80% of total understory irradiance, and in
some cases the majority of carbon fixation
(Pearcy and Calkin 1983, Chazdon 1986, Pearcy
1990), it arrives to the understory of a forest
within an intact canopy in the form of sun flecks
lasting from seconds to minutes (Chazdon and
Fletcher 1984). Thus, it is to the advantage of
understory plants to develop the foliar capacity
to rapidly use short temporal bursts of light (i.e.,
sunflecks) (Chazdon and Pearcy 1986a).

We found a positive correlation between
modeled PPFD and time to reach 50% maximum
assimilation rate (IS50%), differing from Rijkers
et al. (2000), who found no differences in time to
reach 90% maximum assimilation in spite of
large differences in Amax. At first, this relation-
ship appears to indicate that the dominant

control over induction response time is the
maximum photosynthetic rate of the leaf, al-
though the Pearson correlation of 0.22 is low
(Appendix: Table A1), and Amax is related to
species differences and the illumination of the
growth environment. However, further analysis
shows that while Amax is related positively with
growth environment, IS50% is more related to
leaf height where it declines with height,
although leaf height does have a significant
negative correlation with modeled illumination
environment. Given the low Pearson correlation,
there is an opportunity to identify where leaves
simultaneously maintain high maximum photo-
synthesis rates and rapid induction response
times using the ratio of IS50%/Amax, which we
consider a measure of induction response effi-
ciency (i.e., lower values ¼ more efficient). Our
results show increasing induction response effi-
ciency with increasing leaf height and in higher
modeled light growth environments, but de-
creasing efficiency with increasing modeled air
temperature. The relationship with increasing
leaf height is logical as PPFD actually decreases
at the base of the M. polymorpha canopy prior to
increasing near the TOC. Decreasing efficiency in
warmer environments also makes sense as
increased availability of nutrients could results
in reduced requirement for resource use optimi-
zation. As a plant likely shifts a range of leaf
traits simultaneously, we expected to find a
pattern of increasing WUE simultaneous to
induction response efficiency. A linear regression
analysis showed this significant negative rela-
tionship between them (adjusted R2 ¼ 0.17, P �
0.0001, N¼90), indicating simultaneous increases
in light and water use efficiency. Similar to the
findings of Funk and Vitousek (2007), we did not
find significant differences in either water use
efficiency or induction response efficiency be-
tween exotic and native species.

Stable isotopes
Foliar d13C is typically thought to represent

changes in foliar water use efficiency (WUE)
resulting from differences in water availability
(Seibt et al. 2008) or structural differences in the
leaf (Bonal et al. 2007). Variation in foliar d13C
due to differences in atmospheric isotopic com-
position (i.e., increased respired versus atmo-
spheric CO2) would be unlikely to have an effect
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higher than 3–5 m (Ometto et al. 2002) and leaf
height was a non-significant predictor of varia-
tion in foliar d13C. Our d13C values were similar
to those reported in the Amazon (Ometto et al.
2006). However, for M. polymorpha, the canopy
dominant in our study area, different conclusions
regarding determinants of d13C variation have
been found. Vitousek et al. (1990) found that, for
Ohia (M. polymorpha), internal CO2 resistance to
diffusion resulting from increased LMA was a
primary factor determining variation in d13C,
similar to the results found by Körner and
Diemer (1987) who identified a pattern of
increasing elevation, LMA, and d13C. In addition,
a positive relationship between increased carbox-
ylation efficiency and leaf area based N content,
associated with increasing elevation, was found
to result in significantly less negative foliar d13C
values (Cordell et al. 1999). Both studies agree
that species differences is likely a primary factor
determining d13C, but is often overlooked during
analysis, and Seibt et al. (2008) argues the
potential for species differences in mesophyll
conductance may mask trends in WUE. This is
highlighted in our study, as only species differ-
ences (or as lumped into life-form groupings)
were able to explain variation in foliar d13C, with
no correlations found between foliar d13C and
any other leaf trait or predictor variable, includ-
ing modeled mean PPFD or air temperature. As
water is in abundant supply across the entire
study area this result most likely represents
maximized species variability when no poten-
tially cofounding variation in water availability
exists. We did find, however, that photosynthetic
WUE increased significantly with increasing
height in the canopy. We explain this as
representing simultaneous increases in hydraulic
limitations to water availability (Panek 1996) and
shifts in species composition from fast growing
less efficient species in the understory to,
primarily, M. polymorpha, a slow growing canopy
species with low photosynthetic capacity and
high LMA (Cordell et al. 1999).

Foliar d15N represents an integrative measure
of ecosystem dynamics over time (Adams and
Grierson 2001), among other things. In our study,
foliar d15N had no correlation with species but
was significantly explained by air temperature.
As decreasing foliar d15N is generally considered
to represent a tightening of the N cycle (Austin

and Vitousek 1998), the positive relationship
between foliar d15N increasing with air temper-
ature may indicate increased N availability at
lower elevations resulting from faster nutrient
cycling, including decomposition (Vitousek et al.
1989). This is further indicated by the lack of
species significance and the significant multiple
regression (adjusted R2 ¼ 0.30, P � 0.0001, df ¼
97) for foliar d15N which showed that leaf height
was non-significant (F ¼ 0.69, P¼ 0.41) while air
temperature was highly significant (F ¼ 42.04, P
� 0.0001; see Fig. 8). These results are similar to
those reported by Craine et al. (2009) and
Amundson et al. (2003), who both reported a
positive relationship between MAT and foliar
d15N. Foliar d15N values in our study were more
depleted than those reported in parts of the
Amazon (Ometto et al. 2006), similar to those
reported by Martinelli et al. (1999) for M.
polymorpha, but more negative than those report-
ed by Cordell et al. (1999) which were collected at
a different study site in Hawaii. This may be
partly due to our study area having a compar-
atively young substrate, as compared to older
substrates in the Amazon, and therefore a more
conservative nitrogen cycle (Martinelli et al.
1999). Other sources of variation may include
differences in rainfall (Austin and Vitousek 1998)
or increased microbial activities at higher MAT
(i.e., lower elevations) resulting in soil 15N
enrichment through the preferential loss of
isotopically lighter N gases (Martinelli et al.
1999).

Clusters
Leaves may be stratified across light and

temperature gradients due to changes in species
composition based on each preferred growth
environment or acclimation of individual leaves
within a species (Reich et al. 1994). In our study
area, simultaneous changes in species composi-
tion and leaf trait acclimation were evident. The
community Amax to light relationship occurred in
part due to transitions from low to medium to
high light clusters of species (Reich et al. 1994).
The response of each cluster differed however,
similar to findings by Reich et al. (1998a, b), with
those species growing in the highest light
environments having significant correlations
between light and Amax. Such differences are
similar to those identified during forest succes-
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sion, with shifts occurring from pioneer to climax
species having differing capacities to acclimate to
their irradiance growth environments (Poorter et
al. 2006). Küppers et al. (1996) used both
successional and light classes to show a reduction
in the time to reach 50% induction state (IS50%)
from pioneer through late successional species,
but increasing time to reach IS50% with increas-
ing light. Our results highlight that the acclima-
tion capacity may differ regardless of the leaf
trait cluster, based on mean values, to which a
species is assigned. For example, M. polymorpha,
a dominant overstory species, did not increase
Amax with increases in light, while C. glaucum
did. Ecologically, such changes make sense as
species adapted to low light growth environ-
ments will require greater acclimation ability to
take advantage of forest disturbances (Reich et al.
1994), i.e., including tree fall gaps, which result in
large, but potentially short, increases in incident
radiation both within the gaps and within the
surrounding forest (Denslow et al. 1990).

Conclusions
We developed and validated a high-resolution

three-dimensional model of microclimate
through airborne wLiDAR hyperspectral fusion
in a native dominated Hawaiian rainforest. Using

this model, we show that a broad suite of leaf
traits, occurring across species clusters, as well as
within individual species, can be predicted by the
modeled light and modeled air temperature of
the growth environment. At the community
scale, we show that correlations between Amax

and light and air temperature of the growth
environment changes with species clusters, as
well as through acclimation of individuals leaves
within a species to its unique growing environ-
ment. This relationship differs between species
with different competitive growth strategies,
with no acclimation occurring in the dominant
overstory species M. polymorpha, but significant
acclimation (i.e., plasticity) occurring in the
dominant understory species C. glaucum. How-
ever, the greatest factor contributing to leaf trait
variation was identified as inter-species variabil-
ity. Analysis of stable isotopes shows that while
foliar d13C is determined by inter-species differ-
ences (and in particular life form) in leaf
physiology, foliar d15N is determined by ecosys-
tem differences in nutrient cycling resulting from
differences in MAT along the elevation gradient.
While no significant differences in RUE were
identified between exotic and native species, we
did find that species in general increased their
light and water RUE simultaneously related to

Fig. 8. Relationship of multiple regression foliar d15N residuals versus modeled mean daytime air temperature

(8C) and leaf height (m).
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leaf height in general, the illumination state of
their growth environment, and more broadly, to
ecosystem changes in nutrient availability related
to decreasing modeled air temperature associat-
ed with increasing elevation. The results of this
study serve to develop and validate new tools
useful for investigating ecosystem function at
high spatial and temporal resolutions as well as
provide insights into an ecosystem undergoing
rapid degradation through species invasion and
climate change. Future work built off this study
will include full forest productivity modeling
under different disturbance and climate change
scenarios.
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SUPPLEMENTAL MATERIAL

APPENDIX

Fig. A1. Relationships between multiple regression residuals of axis one and two of principal component

analysis (PCA) of foliar ecophysiological variables versus box-cox transformed modeled mean photosynthetic

photon flux density (lmol�m�2�s�1) and modeled mean air temperature (8C).
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Table A2. Pearson correlations between foliar variables 11–20. Only correlations having P-values ,0.05 are

shown. P-values ,0.01, ,0.001, and ,0.0001 are represented by *, **, and /, respectively. Column heading

numbers correspond to numbered variables in the first column here and in Table A1.

Variable 11 12 13 14 15 16 17 18 19 20

12. Jmax (ACi ) 0.98/
13. TPU (ACi ) 0.98/ 0.95/
14. Convexity (induction %) 0.41/ 0.37** 0.39**
15. IS50% (induction) �0.5/
16. WUE 0.32* �0.46/
17. SLA
18. LMA �0.92/
19. Narea 0.22 0.23 0.21 �0.45/ 0.42/
20. PNUE 0.43/ 0.36** 0.49/ 0.26 0.34** 0.53/ �0.47/ �0.4/
21. Amass 0.56/ 0.46/ 0.61/ 0.33* 0.36** 0.60/ �0.56/ 0.84/

Note: See Table A3 for an explanation of abbreviations.

Table A1. Pearson correlations between foliar variables 1–10. Only correlations having P-values , 0.05 are shown.

P-values , 0.01, , 0.001, and , 0.0001 are represented by *, **, and /, respectively. Column heading numbers

correspond to numbered variables in the first column.

Variable 1 2 3 4 5 6 7 8 9 10

1. C%
2. N% �0.24
3. C:N 0.37** �0.87/
4. d13C
5. d15N 0.31* �0.29*
6. Light saturation (AQ) 0.27* �0.32* 0.28*
7. Light compensation (AQ) 0.41/ �0.36** 0.38** �0.22
8. Convexity (AQ) �0.50/
9. Respiration (AQ) �0.36** 0.35** �0.36** �0.86/
10. Amax (AQ) 0.39/ �0.37** 0.35** 0.85/ �0.25 �0.26* 0.29*
11. Vcmax (ACi ) 0.29* �0.21 0.27* 0.45/ 0.69/
12. Jmax (ACi ) 0.24 0.23 0.37** 0.61/
13. TPU (ACi ) 0.30* �0.22 0.28* 0.48/ 0.73/
14. Convexity (induction %) 0.23 0.27* 0.43/
15. IS50% (induction) �0.55/ 0.28* �0.3* 0.29* 0.21 0.22
16. WUE 0.40/
17. SLA �0.41/ 0.44/ �0.51/ �0.32* 0.25
18. LMA 0.45/ �0.51/ 0.59/ 0.42/ �0.37**
19. Narea 0.53/ �0.36** 0.3*
20. PNUE �0.33* 0.65/ �0.25 �0.29* 0.21 0.77/
21. Amass �0.26 0.51/ �0.5/ 0.27* 0.69/ �0.31* �0.23 0.32* 0.87/

Notes: See Table A3 for an explanation of abbreviations. The curve from which variables are calculated is provided in
parenthesis following the variable name.
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SUPPLEMENT

R scripts for conducting clear sky PAR simulations described in the main text (Ecological Archives
C005-006-S1).

Table A3. Glossary of selected abbreviations as used in

this study.

Abbreviation Description of variable

A Net CO2 assimilation rates
ACi Normalized CO2 response curves
AGB Aboveground biomass
AIC Akaike Information Criteria
Amass Ratio of Amax to unit leaf dry mass
Amax Maximum photosynthesis capacity
AQ Normalized light response curves
AQE Apparent quantum efficiency
CAO Carnegie Airborne Observatory
Ci Intracellular CO2 concentration
CV Total coefficient of variation
D Density
DBH Diameter at breast height
Do Dominance
F Frequency
GPS Geographic positioning system
HiFIS High-fidelity hyperspectral imager
IDL Interactive Data Language
IS Induction state
IS50% Time to reach 50% maximum assimilation

rate
IV Importance value
Jmax Maximum rate of RuBP regeneration
LAI Leaf area index
LiDAR Light detection and ranging
LMA Leaf mass per area
MAT Mean annual temperature
MM Modeled mean
mNDVI Modified red edge normalized difference

vegetation index
Narea Nitrogen content per area
PAR Photosynthetic active radiation
PCA Principal component analyses
PNUE Photosynthetic nitrogen use efficiency
PPFD Photosynthetic photon flux density
Q Incident PPFD
RUE Resource use efficiency
SLA Specific leaf area
TOC Top of canopy
TPU Triose phosphate utilization
Vcmax Maximum rate of carboxylation by Rubisco
wLiDAR Waveform light detection and ranging
WUE Water use efficiency
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